1) Jonas JB, Stroux A, Velten I, et al. Central corneal thickness correlated with glaucoma damage and rate of progression. Invest Ophthalmol Vis Sci 2005;46:1269-74.
3) Medeiros FA, Weinreb RN. Is corneal thickness an independent risk factor for glaucoma? Ophthalmology 2012;119:435-6.
4) Li EY, Mohamed S, Leung CK, et al. Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography. Ophthalmology 2007;114:1842-7.
5) Ou RJ, Shaw EL, Glasgow BJ. Keratectasia after laser in situ keratomileusis (LASIK): evaluation of the calculated residual stromal bed thickness. Am J Ophthalmol 2002;134:771-3.
6) Wang Z, Chen J, Yang B. Posterior corneal surface topographic changes after laser in situ keratomileusis are related to residual corneal bed thickness. Ophthalmology 1999;106:406-10.
7) Huang J, Pesudovs K, Wen D, et al. Comparison of anterior segment measurements with rotating Scheimpflug photography and partial coherence reflectometry. J Cataract Refract Surg 2011;37:341-8.
8) O'Donnell C, Hartwig A, Radhakrishnan H. Comparison of central corneal thickness and anterior chamber depth measured using LenStar LS900, Pentacam, and Visante AS-OCT. Cornea 2012;31:983-8.
9) Lee MJ, Shin YU, Lim HW, et al. Central corneal thickness measured by noncontact specular microscopy, dual rotating scheimpflug camera and ultrasound pachymetry. J Korean Ophthalmol Soc 2015;56:1520-6.
10) Jeung JG, Gil TY, Bae GH, et al. Comparison of anterior chamber depth and central corneal thickness measured using different devices. J Korean Ophthalmol Soc 2016;57:1570-6.
11) Shin WB, Jeong HK, Kim MK, et al. Comparison of central corneal thickness measured by swept-source optical coherence tomography and ultrasound pachymetry. J Korean Ophthalmol Soc 2017;58:276-82.
12) Ohn K, Lee MY, Lee YC, Shin HY. Comparison of central corneal thickness measurements between noncontact specular microscopy and ultrasound pachymetry. J Korean Ophthalmol Soc 2019;60:635-42.
13) Eah KS, Shin JW, Sung KR. New non-contact tonometer HNT-1P reliability: comparing intraocular pressure, central corneal thickness, and corrected intraocular pressure. J Korean Ophthalmol Soc 2020;61:524-31.
14) Kim HY, Budenz DL, Lee PS, et al. Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry. Am J Ophthalmol 2008;145:228-32.
15) Ramesh PV, Jha KN, Srikanth K. Comparison of central corneal thickness using anterior segment optical coherence tomography versus ultrasound pachymetry. J Clin Diagn Res JCDR 2017;11:NC08-11.
16) Tai LY, Khaw KW, Ng CM, Subrayan V. Central corneal thickness measurements with different imaging devices and ultrasound pachymetry. Cornea 2013;32:766-71.
17) Kim DW, Yi KY, Choi DG, Shin YJ. Corneal thickness measured by dual Scheimpflug, anterior segment optical coherence tomography, and ultrasound pachymetry. J Korean Ophthalmol Soc 2012;53:1412-8.
19) Kong K. Statistical methods: reliability assessment and method comparison. The Ewha Medical Journal 2017;40:9-16.
20) Kim JH, Choi KR, Jun RM, Han KE. Repeatability and reproducibility of tear meniscus evaluations using two different spectral domain-optical coherence tomography. J Korean Ophthalmol Soc 2019;60:929-34.
21) Salvi SM, Soong TK, Kumar BV, Hawksworth NR. Central corneal thickness changes after phacoemulsification cataract surgery. J Cataract Refract Surg 2007;33:1426-8.
22) Perone JM, Boiche M, Lhuillier L, et al. Correlation between postoperative central corneal thickness and endothelial damage after cataract surgery by phacoemulsification. Cornea 2018;37:587-90.
23) Copt RP, Thomas R, Mermoud A. Corneal thickness in ocular hypertension, primary open-angle glaucoma, and normal tension glaucoma. Arch Ophthalmol 1999;117:14-6.
25) Ling T, Ho A, Holden BA. Method of evaluating ultrasonic pachometers. Am J Optom Physiol Opt 1986;63:462-6.
26) Koktekir BE, Gedik S, Bakbak B. Comparison of central corneal thickness measurements with optical low-coherence reflectometry and ultrasound pachymetry and reproducibility of both devices. Cornea 2012;31:1278-81.
27) Savini G, Carbonelli M, Barboni P, Hoffer KJ. Repeatability of automatic measurements performed by a dual Scheimpflug analyzer in unoperated and post-refractive surgery eyes. J Cataract Refract Surg 2011;37:302-9.
30) Wirbelauer C, Scholz C, Hoerauf H, et al. Noncontact corneal pachymetry with slit lamp-adapted optical coherence tomography. Am J Ophthalmol 2002;133:444-50.
31) Wong AC, Wong C, Yuen NS, Hui S. Correlational study of central corneal thickness measurements on Hong Kong Chinese using optical coherence tomography, Orbscan and ultrasound pachymetry. Eye (Lond) 2002;16:715-21.
32) Scotto R, Bagnis A, Papadia M, et al. Comparison of central corneal thickness measurements using ultrasonic pachymetry, anterior segment OCT and noncontact specular microscopy. J Glaucoma 2017;26:860-5.
33) Fishman GR, Pons ME, Seedor JA, et al. Assessment of central corneal thickness using optical coherence tomography. J Cataract Refract Surg 2005;31:707-11.
34) Leung DY, Lam DK, Yeung BY, Lam DS. Comparison between central corneal thickness measurements by ultrasound pachymetry and optical coherence tomography. Clin Exp Ophthalmol 2006;34:751-4.
35) Ishibazawa A, Igarashi S, Hanada K, et al. Central corneal thickness measurements with Fourier-domain optical coherence tomography versus ultrasonic pachymetry and rotating Scheimpflug camera. Cornea 2011;30:615-9.
36) Correa-Pérez ME, López-Miguel A, Miranda-Anta S, et al. Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness. Invest Ophthalmol Vis Sci 2012;53:1752-7.
37) Prakash G, Agarwal A, Jacob S, et al. Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability. Am J Ophthalmol 2009 148:282-90. e2.
38) Zhao Y, Chen D, Savini G, et al. The precision and agreement of corneal thickness and keratometry measurements with SS-OCT versus Scheimpflug imaging. Eye Vis (Lond) 2020 Jun 9 doi: 10.1186/s40662-020-00197-0. [Epub ahead of print].
39) AlMahmoud T, Priest D, Munger R, Jackson WB. Correlation between refractive error, corneal power, and thickness in a large population with a wide range of ametropia. Invest Ophthalmol Vis Sci 2011;52:1235-42.
40) Antonios R, Fattah MA, Maalouf F, et al. Central corneal thickness after cross-linking using high-definition optical coherence tomography, ultrasound, and dual Scheimpflug tomography: a comparative study over one year. Am J Ophthalmol 2016;167:38-47.
42) Yeter V, Sönmez B, Beden U. Comparison of central corneal thickness measurements by Galilei Dual-Scheimpflug analyzer
® and ultrasound pachymeter in myopic eyes. Ophthalmic Surg Lasers Imaging 2012;43:128-34.
43) Karimian F, Feizi S, Faramarzi A, et al. Evaluation of corneal pachymetry measurements by Galilei dual Scheimpflug camera. Eur J Ophthalmol 2012;22 Suppl 7:S33-9.
45) Lin CW, Wang TH, Huang YH, Huang JY. Agreement and repeatability of central corneal thickness measurements made by ultrasound pachymetry and anterior segment optical coherence tomography. Taiwan J Ophthalmol 2013;3:98-102.